There's a thread on hackers about recovering memory consumed by paths. A reference count is maintained in each path. Once paths are created for all the upper level relations that a given relation participates in, any unused paths, for which reference count is 0, are freed. This adds extra code and CPU cycles to traverse the paths, maintain reference counts and free the paths. Yet, the patch did not show any performance degradation. I was curious to know why. I ran a small experiment.
Experiment
I wrote an extension palloc_test which adds two SQL-callable functions palloc_pfree() and mem_context_free() written in C. Function definitions can be found here. The first function palloc's some memory and then pfree's it immediately. Other function just palloc's but never pfrees, assuming that the memory will be freed when the per-tuple memory context is freed. Both functions take the number of iterations and size of memory allocated in each iteration respectively as inputs. These functions return amount of time taken to execute the loop allocating memory. It appears that the first function spends CPU cycles to free memory and the second one doesn't. So the first one should be slower than the second one.
Results
The table below shows the amount of time reported by the respective functions to execute the loop as many times as the value in the first column, each iteration allocating 100 bytes. The figure shows the same as a plot. The time taken to finish the loop increases linearly for both the function indicating that the palloc logic is O(n) in terms of number of allocations. But the lines cross each other around 300K allocations.
Inference and conclusion
This agrees with the observations I posted on the thread. Instead of letting all the useless path to be freed when query finishes, freeing them periodically during planning is time efficient as well as memory efficient. It compensates for the extra CPU cycles spent to maintain reference counts, traverse and free paths.
The actual memory allocation and freeing pattern as implemented in that patch is different from that in the experiment, so it might be worth repeating those experiments by simulating similar pattern.
I used chunk size of 100 since I thought it's closer to the order of average path size. But it might be worth repeating the experiment with larger chunk sizes to generalize the result.